CSET2024AI安全的关键概念机器学习中可靠的不确定性量化方法分析报告英文版13页

3.0 2025-05-15 27 0 446 KB 13 页 PDF
侵权投诉
CSET2024AI安全的关键概念机器学习中可靠的不确定性量化方法分析报告英文版13页
CSET2024AI安全的关键概念机器学习中可靠的不确定性量化方法分析报告英文版13页
CSET2024AI安全的关键概念机器学习中可靠的不确定性量化方法分析报告英文版13页
CSET2024AI安全的关键概念机器学习中可靠的不确定性量化方法分析报告英文版13页
CSET2024AI安全的关键概念机器学习中可靠的不确定性量化方法分析报告英文版13页
摘要:

Issue BriefJune 2024Key Concepts in AI SafetyReliable Uncertainty Quantification in Machine LearningAuthors Tim G. J. Rudner Helen Toner Center for Security and Emerging Technology | 1 This paper is the fifth installment in a series on “AI safety,” an area of machine learning research that aims to identify causes of unintended behavior in machine learning systems and develop tools to ensure these systems work safely and reliably. Other papers in the series describe three categories of AI safety issues—problems of robustness, assurance, and specification. This paper introduces the idea of uncertainty quantification, i.e., training machine learning systems that “know what they don’t know.” Introduction The last decade of progress in machine learning research has given rise to systems that are surprisingly capable but also notoriously unreliable. The chatbot ChatGPT, developed by OpenAI, provides a good illustration of this tension. Users interacting with the system after its release in

展开>> 收起<<
CSET2024AI安全的关键概念机器学习中可靠的不确定性量化方法分析报告英文版13页

共 13 页,预览3页

还剩10页未读, 继续阅读

声明:企商查报告文库所有资源均是客户上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作商用。
作者: 分类: 属性:13 页 大小:446 KB 格式:PDF 时间:2025-05-15

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 3
客服
关注